Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Commun Signal ; 20(1): 173, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2098351

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been growing swiftly worldwide. Patients with background chronic pulmonary inflammations such as asthma or chronic obstructive pulmonary diseases (COPD) are likely to be infected with this virus. Of note, there is an argument that COVID-19 can remain with serious complications like fibrosis or other pathological changes in the pulmonary tissue of patients with chronic diseases. Along with conventional medications, regenerative medicine, and cell-based therapy could be alternative approaches to compensate for organ loss or restore injured sites using different stem cell types. Owing to unique differentiation capacity and paracrine activity, these cells can accelerate the healing procedure. In this review article, we have tried to scrutinize different reports related to the harmful effects of SARS-CoV-2 on patients with asthma and COPD, as well as the possible therapeutic effects of stem cells in the alleviation of post-COVID-19 complications. Video abstract.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , SARS-CoV-2 , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Asthma/complications , Asthma/drug therapy
2.
Cell Biochem Funct ; 40(5): 430-438, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1866513

ABSTRACT

The pandemic of COVID-19 caused worldwide concern. Due to the lack of appropriate medications and the inefficiency of commercially available vaccines, lots of efforts are being made to develop de novo therapeutic modalities. Besides this, the possibility of several genetic mutations in the viral genome has led to the generation of resistant strains such as Omicron against neutralizing antibodies and vaccines, leading to worsening public health status. Exosomes (Exo), nanosized vesicles, possess several therapeutic properties that participate in intercellular communication. The discovery and application of Exo in regenerative medicine have paved the way for the alleviation of several pathologies. These nanosized particles act as natural bioshuttles and transfer several biomolecules and anti-inflammatory cytokines. To date, several approaches are available for the administration of Exo into the targeted site inside the body, although the establishment of standard administration routes remains unclear. As severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory system, we here tried to highlight the transplantation of Exo in the alleviation of COVID-19 pathologies.


Subject(s)
COVID-19 , Exosomes , COVID-19/therapy , Cytokines , Exosomes/transplantation , Humans , SARS-CoV-2
3.
Stem Cell Rev Rep ; 17(1): 214-230, 2021 02.
Article in English | MEDLINE | ID: covidwho-1009201

ABSTRACT

The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.


Subject(s)
COVID-19/therapy , Pandemics , Stem Cell Transplantation , Virus Diseases/therapy , COVID-19/virology , Disease Outbreaks/prevention & control , Humans , SARS-CoV-2/pathogenicity , Stem Cells/pathology , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL